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School choice

In school choice, we assign seats at schools S = {s1, . . . , sn} to students
I = {i1, . . . , im}:
• qs : the capacity (quota) of school s
• �s : the strict priority structure at school s; i �s j iff i has higher
priority than j at s

• Pi : the strict preference of student i ; s ′Pi s iff i prefers s ′ to s
• Ri : the extension of Pi . That is, s ′Ri s iff s ′Pi s or s ′ = s
• ∅ : the null school, unlimited capacity
• �≡ (�s )s∈S ,P ≡ (Pi )i∈I . And �−s ,P−i are defined as usual

A school choice problem is a pair (P,�)



Problems of interest

Desirable properties (criteria) for school choice mechanisms: Stability,
Pareto effi ciency, and strategy-proofness

Issues in market design:

• studying the trade-offs among these criteria
• design for weak priorities
• design for affi rmative action



Summary of mechanisms

The popular mechanisms and their properties

Stability Effi ciency Stgy.Proofnes
DA Y N Y
TTC N Y Y
Boston N Y N



Example: Ineffi ciency of DA

For a given �, the mechanism DA�(·) is always optimally stable (for
students), but may not be Pareto effi cient

Example
In the problem (P,�),S = {s1, s2}, qs1 = qs2 = 1; I = {i , j , k}.

�s1 �s2 Pi Pj Pk
i k s2 s1 s1
j i s1 ∅ s2
k

s1 s2 ∅
j , k i

k , i
i , j

j

i k j



Group strategy-proofness

A mechanism ϕ is group strategy-proof if there do not exist C ⊂ I and
P ′C such that for all i ∈ C , ϕi (PC ,P−C )Riϕi (P ′C ,P−C ), and for some
j ∈ C , ϕj (PC ,P−C )Pjϕj (P ′C ,P−C ).

Definition
A mechanism ϕ is nonbossy if for all P, i , and P̃i , ϕi (P) = ϕi (P̃i ,P−i )
implies ϕ(P) = ϕ(P̃i ,P−i )

Theorem
A mechanism is group strategy-proof if and only if it is strategy-proof
and nonbossy.

DA is strategy-proof for students but not group strategy-proof, because it
is bossy. In Example 1, j can benefit i and k by misreporting Pj : ∅,
without affecting her own assignment.



Characterizing ineffi cient priority structures

For the priority structure given in Example 1, DA�(·) is ineffi cient. Ergin
(2002, Econometrica) provides a general characterization of such priority
structures

Definition (Ergin, 2002)
Let � be a priority structure and q be a vector of quotas (capacities).
Then (�, q) contains a cycle if there exist s1, s2 ∈ S , and i , j , k ∈ I , such
that

1 i �s1 j �s1 k �s2 i ;
2 There exist (possibly empty) disjoint sets I1, I2 ⊂ I\{i , j , k} such
that I1 �s1 j and I2 �s1 i , |I1| = qs1 − 1, and |I2| = qs2 − 1.

A priority structure is acyclical if it does not contain any cycles. Note
that a cycle is defined by both school priorities and school capacities.



Characterizing ineffi cient priority structures

Theorem (Ergin, 2002)
For any (�, q), the following are equivalent:
1 DA�(·) is Pareto effi cient;
2 DA�(·) is group strategy-proof;
3 (�, q) is acyclical.

The proof of necessity is constructive and is quite invovled. We sketch
the intuition for suffi ciency



Proof intuition

Given an acyclic structure (�, q), consider a preference profile in which
all students in I1 likes only s1 and all students in I2 likes only s2

Pi Pj Pk PI1 PI2
s2 s1 s1 s1 s2
s1 ∅ s2

s1 s2 ∅
I1, j , k I2, i

I2, k , i

I1, i , j

j

I1, i I2, k j



Characterizing ineffi cient priority structures
Theorem (Ergin, 2002)
Let rs (i) be the rank of student i at school s. (�, q) is cyclical iff there
exist student i and school s1, s2 such that i’s rank is larger than qs1 + qs2
at s1 or s2, and |rs1(i)− rs2(i)| > 1.

Hence we see that acylicity does not impose conditions on the
across-school priorities of upper class students.

Example
Acyclical priority structures: left table qs1 = 1, qs2 = 2; right table
qs1 = 2, qs2 = qs3 = 3.

�s1 �s2
i k
j i
k

�s1 �s2 �s3
1 2 5
2 3 4
3 5 1
4 4 3
5 1 2



Related studies

Consistency. In Ergin’s original paper, he also discusses about the
consistency axiom, which we skip here

Robust stability. We see from Example 1 that if j misreports P ′j : ∅
where her true preference is Pj , then her DA assignment will be the
same. But ex post, she can block the DA matching with s1. Kojima
(2011, TE) defines a mechanism to be robustly stable if no such
manipulation is possible, and then characterizes robust stability
mechanisms with acyclical structures

TTC and Kesten-cycles. For school choice problems, TTC and DA can
be viewed as two competing mechanisms. Like Ergin (2002), who
characterizes structures (�, q) at which DA is effi cient, Kesten (2006,
JET) characterizes structures (�, q) at which TTC�(·) is a stable, or
equivalently, at which DA�(·) and TTC�(·) are equivalent mechanisms.



When schools may have non-unit-capacities, even if at (�, q) DA is
Pareto effi cient for all P (and also stable), TTC may generate different
outcomes from DA. In other words, TTC is unnecessarily unstable

Example
Consider the left table in Example 7. We know that this (�, q) is
acyclical, hence DA�(P) is effi cient for all P. For the preference in
Example 1, DA matches s1 to j and s2 to i (this is effi cient), but TTC
matches s1 to k .



Trade-offs among criteria

Suppose ϕ is a mechanism that Pareto dominates DA, then

• ϕ is not stable, because DA is already optimally stable
• ϕ is not strategy-proof, due to the following impossibility result (see
e.g., Erdil, 2014, JET)

Theorem
If ϕ is a strategy-proof and nonwasteful mechanism, then there is no
strategy-proof mechanism that Pareto dominates ϕ.



Proof intuition

Lemma
If ν weakly Pareto dominates a non-wasteful matching µ, then the same
set of students is matched at ν and µ

Next, fix �. Suppose there exists ψ that dominates ϕ. Then there exists
P, such that ψi (P)Riϕ(P) for all i and ψj (P)Pjϕj (P) for some j . Let
ψj (P) = s. Consider P

′
j : s∅.

ϕ ψ
Pi ϕi (P) < s

⇓SP of ϕ ↑misreport
P ′i ∅ Lemma

=⇒ ∅



Example

Suppose ψ Pareto improves on DA by letting i and k trade in the Ergin
cycle example. Then ψ is not strategy-proof

Proof. By definition, ψk (P) = s1. At P
′
k : s1∅, DA assigns ∅ to k and so

wil ψ. Therefore, under ψ, k has incentive to report Pk when her true
preference is P ′k

�s1 �s2 Pi Pj P ′k
i k s2 s1 s1
j i s1 ∅ ∅
k s2

s1 s2 ∅
j , k i

k
j i k



Pareto improvement on DA

It has been empirically documented that the effi ciency loss of DA can be
significant in practice (Abdulkadiroglu, Pathak, and Roth, 2009)

We have also seen that Pareto improvement on DA hurts both stability
and strategy-proofness

In general, mechanisms that improve on DA are expected to be diffi cult
to manipulate, especially when the market is large.

Now, if we want to Pareto improve on DA, how should we do it?



Kesten (2010): School choice with consent

In the DA procedure of the Ergin cycle example, j is an "interrupter"—she
is tentatively accepted by s1, crowds out other students during the
acceptance, but is later rejected by s1

Observe that j can improve the assignments of k and i without hurting
her own assignment, if she gives up her priority at s1

Inspired by this, Kesten (2010) seeks to improve the effi ciency of DA by
obtaining students’consent to give up (some of) their priorities.



EADAM

Suppose the consent of some students have been obtained. Kesten’s
effi ciency-adjusted DA mechanism (EADAM) operates as follows:

Round 0 Run DA for (P,�)
Round k, k ≥ 1 Find the last consenting interrupter of round-(k − 1)

DA, remove the interrupted school from her preference
and re-run DA.
Stop when there are no more consenting interrupters

Kesten shows that EADAM is Pareto effi cient when all students consent.
Furthermore, under EADAM, whether a student consents or not, her
assignment will not be affected. This important result makes sure that
the students do not have incentive to not consent.



Example

Suppose I = {i1, . . . , i6},S = {s1, . . . , s5}, and qs = 1, except qs5 = 2.
Let (P,�) be described by

Example
s1 s2 s3 s4 s5

i2 i3 i1 i4
...

i1 i6 i6 i3
i5 i4 i2 i6

i6 i1 i3
...

i4
...

...
i3

Pi1 Pi2 Pi3 Pi4 Pi5 Pi6
s2 s3 s3 s1 s1 s4
s1 s1 s4 s2 s5 s1

s3 s5 s2 s4
... s3

...
...

... s2
s5



The DA procedure:

Step s1 s2 s3 s4 s5
1 i5 , i4 i1 i2 , i3 i6

2
... i1, i4

... i6, i3

3 i5, i6, i1
...

...

4
... i2, i6 i5

5 i2 , i1
...

...

6
... i1 , i6

7 i6 , i4
...

8
... i4 , i3

9 i6, i3
...

10 i2 i3 i1 i4 i5 , i6



EADAM procedure:

Round 1 the last interrupter-school pair of the DA procedure is
(i6, s2). Remove s2 from Pi6 and re-run DA

Round 2 the last interrupter-school pair of round-1 DA is (i6, s3).
Remove s3 from Pi6 and re-run DA

Round 3 the last interrupter-school pair of round-2 DA is (i5, s1).
Remove and re-run...

Round 4 the last interrupter-school pair of round-3 DA is (i6, s1).
Remove and re-run...

Round 5 no more interrupters. Stop



Tang and Yu (2010): A new perspective on EADAM

Tang and Yu revisit Kesten’s school choice with consent idea and
provides a more intuitive and accessible approach. Incentives for consent
are important in the design

When will a student consent to give up their own hope to help others,
while knowing that everybody may be helped? The simple answer is:
when a student find herself cannot be Pareto improved anymore

Now, which students are Pareto unimprovable?



Underdemanded schools

Definition
At matching µ, school s is an underdemanded school if no student
prefers s to her own assignment

Observations:

• a school s is underdemanded at DA(P,�) if and only if it never
rejected any student during the DA procedure;

• since DA is non-wasteful, any Pareto improvement upon the DA
matching must be through trading cycles

Lemma
If matching µ Pareto dominates DA(P,�), and student i is matched with
an underdemanded school at DA(P,�), then µ(i) = DA(P,�)(i)

We can further generalize this concept to essentially underdemanded
schools



Underdemanded schools

The simplified EADAM we propose runs as follows:

Round 0 Run DA for the problem (P,�).
Round k, k ≥ 1 1 Consider last round’s DA, settle the matching at

underdemanded schools and remove them with the
admitted students.

2 For each non-consenting student i who was removed,
if i desires a remaining school s, remove all students
with lower priority than i from �s .

3 After that, re-run DA for the remaining schools and
students

Stop when all schools are removed.



Example revisited

The simplified EADAM is well-defined, and since at least one school is
removed in each round, the algorithm stops within |S ∪ {∅}| = m + 1
rounds

Let’s revisit Kesten’s Example. Suppose all students consent. At the end
of DA(P,�), s5 is underdemanded, and is matched with i5, i6.

Round 1 Remove s5 with i5, i6. Re-run DA, we have

s1 s2 s3 s4
Step 1 i4 i1 i2 , i3
Step 2 i3
Step 3 i4 i1 i2 i3

Round 2 s1, s2, s4 are underdemanded, remove. The process
"essentially" ends



Properties

Theorem
The simplified EADAM is Pareto effi cient when all students consent and
constrained effi cient otherwise.

Since in the algorithm, a student’s consent will be used only if her
assignment cannot be further improved, the following becomes
transparent. And such transparency is very important for a mechanism to
be put into practice

Theorem
The assignment of any student does not change whether she consents or
not.



Unification and equivalence

Now, we can unify our approach of focusing on underdemanded schools
and Kesten’s approach of focusing on lastly rejected interrupters

Lemma
If student i is the last interrupter rejected in the DA procedure, then
DA(P,�)(i) is essentially underdemanded and hence i is Pareto
unimprovable

That is, Kesten’s approach is simply another implementation of focusing
on unimprovable students. As a result, the simplified EADAM and
Kesten’s EADAM are outcome equivalent



Weak priorities (Erdil and Ergin, 2008)

In practice, schools often rank students into tiers and hence have weak
priorities over students. Consider any school choice problem (P,�),
where � is a weak priority structure

Since the DA procedure is defined only for strict priorities and
preferences, before running DA, we need to break ties in the weak priority
lists. A tie-breaking rule τ for � is an exogenous permutation of the set
of students I

Given a problem (P,�), matching µ is constrained effi cient if it is stable
and is not Pareto dominated by any other stable matching. However,
tie-breakers do not necessarily bring us the constrained-effi cient matching



Example

Consider a simple variation of the Ergin cycle Example. Now, j and k
have the same priority at s1

�s1 �s2
i k
j , k i

Pi Pj Pk
s2 s1 s1
s1 ∅ s2

The two stable matchings are marked out by underlines and boxes. The
tie-breaking rule either breaks �s1 as i � k � j or as i � j � k , and the
corresponding DAs produces the two stable matchings, respectively

DAτ (·,�) is not constrained effi cient for the tie-breaker i � j � k. Yet
still, due to the impossibility result, we cannot improve its effi ciency
without sacrificing strategy-proofness



Stable improvement cycles

Fix a problem (P,�) and a matching µ. For each school x , let Dx be the
highest �x -priority students among those who desire x (i.e., who prefer x
to their assignmentes at µ).

Definition
A stable improvement cycle (SIC) consists of distinct students
i1, . . . , in ≡ i0 (n ≥ 2) such that for each l = 0, . . . , n − 1,

(i) il is matched to some school at µ;

(ii) il desires µ(il+1); and

(iii) il ∈ Dµ(il+1)

Given µ and a SIC at µ, if we let students in this SIC trade seats, the
newly obtained matching will still be stable w.r.t. (P,�)



SIC algorithm

Theorem
Fix (P,�) and a stable matching µ. If µ is not constraint effi cient, then
it admits a SIC

Therefore, starting with an arbitrary stable matching, we can achieve
constrained effi ciency by iteratively find and implement SICs. Erdil and
Ergin propose the following SIC algorithm:

Step 0. Select a tie-breaking rule τ and run DA to obtain
DAτ (P,�).

Step t ≥ 1. At µ0 ≡ DAτ (P,�), find an SIC: for schools x and y , let
x → y if some student i matched at x who desires y , and
i ∈ Dx . If there are cycles, select one and implement the
trading. Denote the newly obtained matching by µ1, and
iterate the process. If no cycle, stop.



For the previous example, at the DA outcome under the tie-breaker
i � j � k, the SIC algorithm trades the cycle s1 ↔ s2

The SIC algorithm is similar to but different from TTC:

• The cycles here are stable improvement cycles; students are pointing
to all schools that are better than their current match. While in
TTC, each agent points to her most favorite school

• For convenience, the algorithm is described through the pointings
among schools instead of that among students. Each school may
point to none or multiple other schools. Hence, each school may be
involved in multiple cycles, and cycle-selection is an issue (the simple
way is to randomly pick one).



Simplified EADAM for weak priorities

The simplified EADAM (Tang and Yu, 2010) can also be used to simplify
the process of handling weak priorities, by assuming that each student
consents to give up her priorities after tie-breaking to students with the
same original priority

At the DA matching, we can iteratively match and remove students
matched at underdemanded schools, for each student i removed and each
remaining school s that i desires, we remove all students with strictly
lower s-priority than i from �s

Revisit the example above

Since the simplified EADAM recovers constrained effi ciency within
|S ∪ {∅}| = m+ 1 rounds, computationally it is very fast. Furthermore, it
does not suffer from the issue of cycle-selection and hence is more
tractable.



Affi rmative action

Let I be the set of students, IM be the set of majority students, and Im

be the set of minority students

Stability can be strengthened accordingly when the following affi rmative
action policies are taken into consideration:

• Majority quota: the number of majority students matched to school
s cannot exceed the majority quota qMs

• Minority reserve: if the number of minority students matched to
school s is less than the minority reserve rms , then minority students
are always preferred to majority students.



Example

The following example illustrates that the spirit of affi rmative action
cannot be respected by setting majority quotas

Example (Kojima, 2012, GEB)
Suppose S = {s1, s2}, I = {i , j , k}, IM = {i , j}, and Im = {k}. And
qs1 = 2, qs2 = 1. The preferences are:
�s1 �s2
i j
j k
k i

Pi Pj Pk
s1 s1 s2
∅ s2 s1

Let qMs2 = 1. Both when q
M
s1 = 2 and q

m
s1 = 1, there is only one stable

matching, respectively:
s1 s2
i , j k

s1 s2
i , k j



So we see that under Majority quota, when more stringent quota is
imposed on majority students, the minority students may become worse
off

This is not the case for Minority reserve

The DA algorithm modified for minority reserves (Hafalir et. al, 2013,
TE):
Runs as usual as the student-proposing DA, except that when facing
applications at any step, each school always accepts the top minority
applicants first, up to the reserve qms , and then consider the rest of the
applicants by priority


